

Seismic Attributes - from Interactive Interpretation to Machine Learning

Kurt J. Marfurt (The University of Oklahoma) Geometric Attributes GLCM Amplitude Textures Geometric Attributes that map continuity, amplitude changes and textures

- 1. Coherence
- 2. Amplitude gradients
- 3. GLCM textures

Gray Level Co-occurrence Matrix (GLCM) Textures

After this section you will be able to:

• Use GLCM textures to quantify patterns that the interpreter sees and uses, but finds difficult to describe, and

• Use these textures in subsequent facies identification using machine learning.

Everyday Textures

GLCM used in remote sensing of land use.

5 km

Forest

Urban

Wetlands

Agricultural fields

Water bodies

ERS-1 SAR image

10 km

In-situ control

From satellite data and GLCM clustering

Ground

Gul

³D texture mapping (GLCM)

1000-

11-

16-

3

Matrix size 16

(Chopra and Marfurt, 2007)

5g-6

How GLCM is evaluated

GLCM (texture) attributes

Contrast L2 norm of similarity

Returns a measure of the intensity contrast between a pixel and its neighbor over the whole image. Contrast is 0 for a constant image.

Dissimilarity L1 norm of similarity

Homogeneity Inverse norm of similarity

Returns a value that measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal. Homogeneity is 1 for a diagonal GLCM.

Energy A measure of smoothness

Returns the sum of squared elements in the GLCM. Energy is 1 for a linear amplitude gradient

Mean

Correlation

Returns a measure of how correlated a pixel is to its neighbor over the whole image. Correlation is 1 or -1 for a perfectly positively or negatively correlated image. Correlation is NaN for a constant image.

Entropy A measure of disorderliness (or roughness)

Example : GLCM Matrices and attributes from a photo

Outcrop image of Monongahela Group, Pittsburgh Formation (www.geology.pitt.edu)

> 5x5 pixels 256 gray levels and 4 attributes

Contrast	0.986
Correlation	0.7395
Energy	0.0844
Homogeneity	0.5

■ GLCM attributes and clustering

Application to an outcrop photo

(Angelo et al., 2009)

Energy ratio coherence

Great South Basin, NZ

GLCM homogeneity

Great South Basin, NZ

GLCM energy Great South Basin, NZ

GLCM entropy Great South Basin, NZ

Seismic amplitude Eugene Island, Offshore Louisiana

(Chopra and Marfurt, 2021)

CCM entropy corendered with seismic amplitude Eugene Island, Offshore Louisiana

(Chopra and Marfurt, 2021)

5g-20

CCM homogeneity corendered with seismic amplitude Eugene Island, Offshore Louisiana

(Chopra and Marfurt, 2021)

5g-21

Thteractive use of GLCM textures Salt picked from a seeded GLCM 'energy' volume

Seismic textures

Isolated amplitude anomaly

Low-moderate amplitude, low continuity

Chaotic, hummocky, moderate amplitude, low continuity

Low amplitude, low-moderate continuity

Low-moderate amplitude, moderate continuity

High amplitude, high continuity

Low amplitude, low continuity, massive

Textural attribute sensitivity to depositional facies.

Calibration of textures to facies using well control and geologic models

Interactive use of GLCM textures

Architectural elements mapped using GLCM textures and well control

Common pitfalls

- Several of the GLCM attributes (correlation, variance) are inferior in resolution to conventional coherence attributes
- GLCM homogeneity and GLCM entropy are be inversely correlated in areas with good signal-to-noise ratios; however, if they have different sensitivity to noise using both can aid in machine learning classification.

Lateral Changes in Amplitude and Texture Analysis

In Summary:

Texture attributes quantify lateral patterns in the data that are hard to describe, but can be used in

- Interactive interpretation when correlated with well control in the construction of geobodies, and
- Machine-learning supervised and unsupervised facies classification.

Pattern-recognition math

