

Seismic Attributes - from Interactive Interpretation to Machine Learning

Kurt J. Marfurt (The University of Oklahoma)

Mathematically Independent Geometric Attributes Correlated through Geology

Spectral decomposition

Broadband seismic amplitude

Spectral voice at 20 Hz

Spectral voice at 40 Hz

Spectral voice at 60 Hz

Corendered spectral magnitude and spectral voice at 20 Hz

Magnitude

Maximum

0 10 Opaci_ty

0

Amplitude

0

Positive

1 mile ____>

Corendered spectral magnitude and spectral voice at 40 Hz

1 mile **< - - - - >**

Corendered spectral magnitude and spectral voice at 60 Hz

---->

Corendered spectral magnitude at 20 Hz and broadband amplitude

1 mile ___ – – – >

Corendered spectral magnitude at 40 Hz and broadband amplitude

---->

Corendered spectral magnitude at 60 Hz and broadband amplitude

Spectral magnitude at 20 Hz

A'

Magnitude Maximum 0

А

Spectral magnitude at 40 Hz

Spectral magnitude at 60 Hz

Corendered spectral magnitude at 20 Hz, 40 Hz, and 60 Hz

Ν

[■]Coherence

Attributes based on volumetric dip and azimuth

Attributes based on volumetric dip and azimuth

Most negative principal curvature, k_2

Most negative principal curvature, k_2 , co-rendered with coherence

Diagenetically altered joint (cave collapse) Devil's Den State Park, AR

Most positive principal curvature, k_1

Most positive principal curvature, k_1 , co-rendered with coherence

Both principal curvatures, k_1 and k_2 , co-rendered with coherence

Attributes based on volumetric dip and azimuth

Shape index modulated by curvedness

Shape index modulated by curvedness, co-rendered with coherence

Bowl component co-rendered with coherence

(Marfurt, 2010)

_

Correlation of bowl shape component with collapse features

Correlation of bowl shape component with collapse features

Bowl and coherence

Attributes based on volumetric dip and azimuth

Strike modulated by most-negative principal curvature

Strike modulated by most-negative principal curvature, co-rendered with coherence

Strike of most negative curvature modulated by its strength

Diagenetically altered joints appear as structural lows

Mathematically Independent Attributes Correlated through Geology

In Summary:

- In general, always use mathematically independent attributes in your interpretation
- In interactive interpretation, mathematically independent attributes that delineate the same feature provide insight into its generation and confidence in its interpretation
- In machine learning interpretation, mathematically independent attributes that delineate the same feature provide a means of discriminating a target class of features from the background