

Seismic Attributes - from Interactive Interpretation to Machine Learning

Kurt J. Marfurt (The University of Oklahoma)

Color and Multiattribute Display

Multiattribute display

After this section you should be able to:

- Identify good and bad color display practices,
- Display multiple attributes in a single image, and

• Apply color schemes that allow you to effectively communicate these features to others.

Color perception: Humans

Cone and Rod receptors

Cone: 3 types, each being sensitive to a different range of wavelengths *Rod*: for night vision, sensitive to a broad range of light intensities

Color perception: Men vs. women

(email communication on 10/18/2011. Origin unknown)

Alternative color models

The additive RGB color model Mixes light

The subtractive CMY color model Mixes pigment

(Chopra and Marfurt, 2021)

Defining 24-bit color on a computer

(Chopra and Marfurt, 2021)

A very recent (2022) color model based on human perception

https://youtu.be/E-9wCFby5XE

Color Depth (the number of colors)

16,777,216 colors R=256,G=256,B=256 (24-bit color)

4096 colors R=16,G=16,B=16

216 colors R=6,G=6,B=6

Only a few interpretation packages provide 24-bit color. Most are still limited to 8-bit color (256 colors)

Color depth – how many colors are enough?

Reflector convergence (magnitude vs. azimuth)

(Central Basin Platform, Texas)

Color depth – how many colors are enough?

Reflector convergence (magnitude vs. azimuth)

(Central Basin Platform, Texas)

Color depth – how many colors are enough?

Reflector convergence (magnitude vs. azimuth)

(Central Basin Platform, Texas)

Multiattribute display tools

- RGB- and CMY-blended ("stacked") images
- HLS color modulated images
- Color blending/transparency/opacity
- Bump maps

Multiattribute display using overlays

(Anstey, 2005)

Multiattribute display of vector data using color icons

(Simon, 2005)

3a-16

Multiattribute display tools

Overplotting

• RGB- and CMY-blended ("color stacked") images

• HLS color modulated images

Color blending/transparency/opacity

• Bump maps

RGB color stack

Red=16 Hz

Green=32 Hz

2 km

Blue=48 Hz

(Guo and Marfurt, 2007)

RGB color stack

Jurassic Channels

(McArdle et al., 2011)

RGB color stack

Triassic Horizon Slice

Jurassic Horizon Slice

(McArdle et al., 2011)

CMY color stack

■ CMY color stack

(Courtesy ffA)

■ CMY color stack

■ CMY color stack

(Courtesy ffA)

CMY color stack – Australia data example

Sharp faults/

Fractures

Amplitude

Change

SO

Discontinuity

Tensor

(Payton et al., 2014)

Computing the "negative" of a photo using Microsoft Paint

		R	G	В
	White	255	255	255
-	Blue	0	0	255
=	Yellow	255	255	0

(Chopra and Marfurt, 2021)

Emphasizing low amplitude RGB anomalies by converting to CMY

An RGB image

A CMY image=(255,255,255)-RGB image

(PetroExplorers and dGB Earth Sciences)

Multiattribute display tools

• Overplotting

- RGB- and CMY-blended ("stacked") images
- HLS color modulated images
 - Color blending/transparency/opacity
 - Bump maps

The HLS color model

Hue: the wavelength contrast aspect of color

Lightness: the level of illumination

Saturation: the degree to which the hue differs from neutral gray

(Chopra and Marfurt, 2007)

Examples of 2D color bars

Peak frequency

(Chopra and Marfurt, 2007)

Multiattribute display using 2D color tables

Time (s)

(after Knobloch, 1982)

^{Multiattribute} display using 2D color tables

Modulating envelope by coherence

(McArdle et al., 2011)

Multiattribute display tools

Overplotting

- RGB- and CMY-blended ("stacked") images
- HLS color modulated images
- Color blending/transparency/opacity
 - Bump maps

Alpha Blending of 2 or 3 images

Each image has R, G, and B components, which can be thought of as vectors, a, b, and c

$$\mathbf{a} = \begin{pmatrix} a_R \\ a_G \\ a_B \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} b_R \\ b_G \\ b_B \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} c_R \\ c_G \\ c_B \end{pmatrix}$$

Blending a and b:

$$\begin{pmatrix} f_R \\ f_G \\ f_B \end{pmatrix} = (1 - \alpha) \begin{pmatrix} a_R \\ a_G \\ a_B \end{pmatrix} + \alpha \begin{pmatrix} b_R \\ b_G \\ b_B \end{pmatrix}$$

Blending a , b, and c:

$$\begin{pmatrix} g_R \\ g_G \\ g_B \end{pmatrix} = (1-\beta) \begin{pmatrix} f_R \\ f_G \\ f_B \end{pmatrix} + \beta \begin{pmatrix} c_R \\ c_G \\ c_B \end{pmatrix} = (1-\beta)(1-\alpha) \begin{pmatrix} a_R \\ a_G \\ a_B \end{pmatrix} + (1-\beta)\alpha \begin{pmatrix} b_R \\ b_G \\ b_B \end{pmatrix} + \beta \begin{pmatrix} c_R \\ c_G \\ c_B \end{pmatrix}$$

Using Transparency in PowerPoint

 F	Format Picture	
)	Fill	Fill
	Fill Line Color Line Style Shadow Reflection Glow and Soft Edges 3-D Format 3-D Rotation Picture Corrections Picture Color Artistic Effects Crop Size Position Text Box	Fill No fill Solid fill Gradient fill Pattern fill Slide background fill Texture: Insert frue File Tile picture as texture Stretch options Offsets: Left: 0% Right: 0% Top: 0% Bottom: 0% Top: 50% Top:
	Alt Text	Rotate with shape Close

(Marfurt, 2015)

Using Transparency in PowerPoint

Transparent k_1 and k_2 on top of opaque coherence

67 % transparent k_2 on top of opaque gray background

50% transparent k_1 on top of opaque gray background

Replicating the HLS color model by blending monochrome gray, black, and white color bars.

Hue vs. Saturation

(Marfurt, 2015)

3a-37

Replicating the HLS color model by blending monochrome gray, black, and white color bars.

L140% L=30% L=20% L=10% L=0% 90% 90% 90% 80% 80% Lightness (%) 70% 70% 60% 100 60% 50% 50% 40% 40% 30% 30% 20% 10% 50 198% L^{160%} L=70% L=100% L=80% L=90% 90% 90% 90% 90% 80% 80% 80% 80% 70% 70% 70% 60% 60% 60% 50% 50% 50% 40% 40% 40% 30% 30% 0 100 0 20% 20% Opacity (%) 10% 10% 0% 0%

Hue vs. Lightness vs. Saturation

(Marfurt, 2015)

Dip azimuth (with smooth interpolation off)

Dip magnitude

(Marfurt, 2018)

Co-rendered dip azimuth and dip magnitude

(Marfurt, 2018)

W

Co-rendered dip azimuth, dip magnitude, and energy-ratio coherence

Multiattribute display tools

Overplotting

- RGB- and CMY-blended ("stacked") images
- HLS color modulated images
- Color blending/transparency/opacity

Embossing in PowerPoint

(Lynch et al., 2005)

1D Color bars for effective attribute display

(Chopra and Marfurt, 2007)

3a-45

Effective 1D colorbars

Use polychromatic colorbars for internal behavior

3a-46

Effective blended colorbars

Use polychromatic colorbars for internal behavior

Sweetness with Laplacian filtered discontinuity Sweetness with relative envelope gradient

(Barnes, 2011)

Use monochromatic

colorbars for edges

An effective blending scheme

Use polychromatic color bars to represent seismic properties

Use a grayscale color bar to represent seismic edges

An effective blending scheme

(Hadler-Jacobsen et al., 2010)

Common display pitfalls

- Displaying continuous data with colors that are not adjacent in RGB or HLS space
- Using a dual gradational color bar to display single polarity data
- Not using a neutral color to display zero values
- Using a single gradational color bar to display cyclical data
- Defining display limits assuming a normal distribution histogram
- Interpolating discontinuous color bars

Examples of good and bad color maps

Always use a neutral background color for zero values!

(Chopra and Marfurt, 2007)

Common display pitfalls

Displaying continuous data with colors that are not adjacent in RGB or HLS space

• Using a dual gradational color bar to display single polarity data

• Not using a neutral color to display zero values

- Using a single gradational color bar to display cyclical data
- Defining display limits assuming a normal distribution histogram
- Interpolating discontinuous color bars

Examples of good and bad color maps

Maximum curvature, k_{max} (with values near zero set to background!)

(Roberts, 2001)

Common display pitfalls

- Displaying continuous data with colors that are not adjacent in RGB or HLS space
- Using a dual gradational color bar to display single polarity data
- Not using a neutral color to display zero values
- Using a single gradational color bar to display cyclical data
- Defining display limits assuming a normal distribution histogram
- Interpolating discontinuous color bars

Inline dip component, p

Crossline dip component, q

Let's display the dip components as a dip magnitude and a dip azimuth:

 $s=(p^2+q^2)^{1/2}$ $\varphi=ATAN2(q,p)$

Pitfall in interpolating cyclical attributes

Dip azimuth, φ (with smooth interpolation on)

Dip azimuth, φ (with smooth interpolation off)

Co-rendered dip azimuth, dip magnitude, and energy-ratio coherencec

Pitfalls in interpolating envelope and phase

(Marfurt, 2021)

A better way to interpolate envelope and phase

Generate real and imaginary traces (using an attribute calculator)

Interpolate the continuous attributes (using the default parameters)

Recompute the envelope and phase (using an attribute calculator)

$$e(\tau) = \left[u_{\text{Re}}^{2}(\tau) + u_{\text{Im}}^{2}(\tau)\right]^{1/2}$$
$$\varphi(\tau) = \text{ATAN2}\left[u_{\text{Im}}(\tau), u_{\text{Re}}(\tau)\right]$$

Pitfalls and corrections in interpolating envelope and phase

(Infante-Paez and Marfurt, 2015)

Pitfalls and corrections in interpolating envelope and phase

64

Interpolating 2D color bars loaded as a 1D color bar

Operations Geometry Opacity Info H A Statistics 🗅 🔂 🚾 🖉 🍥 'Base map' annotation Settings are inherited from parent folder. Volume visualization 💿 None 🔘 Bilinear 🔘 Smooth Interpolate using tile edge blending Enhance intersection resolution: 3 🗸 Horizontal: Enable zone and segment filters for intersections Enable bump mapping Enable transparency for intersections Max resolution 💿 Full 🛛 🔿 Medium 🔿 Low Enable compressed textures Fast scene movement Decimation while dragging: 2 🗸 Time to wait for data 500 ms 5000 🗸 Apply 🗸 ок 🗙 Cancel

Single Attribute Displays

In Summary:

- The best color scales are those that have analogues to everyday human perception and/or experience (e.g. hot/cold colors, shaded relief maps, ...)
- Hue is a natural choice for attributes that are cyclic (e.g. phase, azimuth, strike, ...)
- Lineaments or discontinuities show up best in monochrome (gray scale, sepia,...)
- Choice of discontinuous color scales prevent the data from speaking for themselves. Rather use single or double gradational scales (Brown, 1999)
- Use a neutral background color for data having low information content! (e.g. white or black for zero curvature) (Kidd, 1999).

Multiattribute Display

- The RGB model works best for attributes that are of the same type and have similar amplitude ranges
 - 3 spectral components
 - 3 adjacent horizon slices through amplitude
 - Coherence computed from 3 spectral components

• Blending works best when one of the attributes is plotted against the black-white lightness axis, rendering easy-to-interpret pastel images

- The HLS model is the method of choice in plotting vector data
 - Dip magnitude vs. dip azimuth
 - Most positive curvature and its strike
 - Fault plane dip magnitude and azimuth
 - Degree of anisotropy and its strike

•The HLS color model provides a means of displaying 'confidence

- The probability that a voxel belongs in a given polychromatic facies
- Confidence in azimuthal anisotropy estimates

Full sense interpretation

(Harding et al., 2000)

Ē

Partial list of attributes that can be plotted against HLS

Background attribute (against hue)	Modulating attribute (against saturation)	Calibration attribute (against lightness)	References
Dip Azimuth	Dip magnitude	Coherence on time slices. Amplitude on vertical slices.	Rijks and Jauffred 1991; Marfurt et al., 1998.
Strike of most-positive principal curvature	Positive value of most-positive principal curvature	Coherence on time slices. Amplitude on vertical slices.	Guo et al., 2013.
Strike of most-negative principal curvature	Positive value of most-negative principal curvature	Coherence on time slices. Amplitude on vertical slices.	Marfurt, 2010; Guo et al., 2011
Reflector shape index	Reflector curvedness	Coherence on time slices. Amplitude on vertical slices.	Marfurt, 2011; Mai et al., 2010; Marfurt, 2010.
Peak spectral frequency	Peak spectral magnitude	Coherence on time slices. Amplitude on vertical slices.	Guo et al., 2008, 2011.
Azimuth of reflector convergence	Magnitude of reflector convergence	Coherence on time slices. Amplitude on vertical slices.	Marfurt, 2010; Marfurt and Rich, 2010; Chopra and Marfurt, 2011.
Azimuth of HTI anisotropy	Magnitude of HTI anisotropy	Confidence of fit, coherence, most- positive curvature, most-negative curvature on time slices. Amplitude on vertical slices.	Guo et al., 2010, Zhang et al., 2011
Azimuth of vector correlation	Magnitude of vector correlation	Coherence on time slice. Amplitude on vertical slices.	Guo et al., 2013
Most likely facies number none		Probability of facies	Espersen et al., 2000

(Marfurt, 2015)

Partial list of attributes that can be plotted against (x,y) then converted to (r,φ) and plotted against HLS

<i>x</i> axis	y axis	Calibration attribute (against lightness)	References
lambda-rho	mu-rho	Coherence on time slices. Amplitude on vertical slices. Microseismic events as icons.	Perez and Marfurt, 2013
Latent space axis 1	Latent space axis 2	Coherence on time slices. Amplitude on vertical slices.	Strecker and Uden, 2002; Wallet et al., 2009; Roy et al., 2011.