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Conditioning of Migrated, Stacked Data
Spectral Balancing and Bandwidth Extension

Seismic Attributes - from Interactive Interpretation 
to Machine Learning
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In this section, we will show how we can improve seismic resolution by flattening the measured spectrum. We will show how using a model-based technique we can extend the response of the estimated reflectivity that is consistent with the measure frequencies to frequencies that are both lower and higher than those measured by the input data.



After this section you should be able to:
• Examine the spectrum of your data and determine whether subsequent 

spectral balancing can help

• Evaluate alternative bandwidth extension techniques using simple wedge 
models

Data Conditioning
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A list of learner objectives for the section on seismic data conditioning.
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Flow diagram showing the workflow used in spectral balancing. First, the input data are decomposed into magnitude and phase components for a suite of frequencies representing the spectrum of the input data. The magnitude components are then adjusted to balance the magnitude spectrum, while the phase component are untouched. The new magnitude and original phase are them combined to reconstruct the original data. In general the magnitude and phase components are not written out to disk but rather manipulated internal to the program.
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Assume the signal s(t) is the convolution of a wavelet, w(t), with the reflectivity series r(t)
Assume the measured data is the signal s(t)  plus  noise n(t):

If we can estimate the spectra of the noise and of the wavelet, in frequency domain the deconvolution is 

where S(f), N(f), are in general unknown but can be estimated by assuming the signal and noise are 
uncorrelated. Then S(f) is estimated by cross-correlating adjacent traces and S(f)+N(f) by autocorrelation 
of  adjacent traces.  If R(f) is white, we can assume W(f)≈S(f).

(Corrao et al., 2011)

Adaptive whitening
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Adaptive whitening used by Corrao et al. (2011) assumes that we have a reasonable estimate of the spectrum of the seismic wavelet, W(f) and noise, N(f). The first step is to remove the effect of the wavelet spectrum through division by W(f). The signal and noise spectra are estimated by crosscorrelating adjacent traces. The component of the data that is in phase with a neighboring trace is s(t), while that which is not is n(t). If N(f)=0, no change to the spectral balancing is applied. However, as the noise increases (typically towards the edges of the bandwidth) the spectral balancing is progressively reduced. Balancing is then done by normalizing the power spectra.



BeforeAfter

(Corrao et al., 2011)

Adaptive whitening
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A representative vertical slice through the input data  before and  filter adaptive whitening. Frequency spectral of the original data(in black) and whitened data (in red).



CWT voices

Frequency (Hz)
20 40 60 80

CWT Magnitude
CWT

magnitude

0

Pos

CWT
Morlet 

wavelets

Frequency (Hz)
20 40 60 80

Synthetic

Amplitude
Neg 0 Pos

Reflectivity

Ti
m

e 
(s

)

1.8

1.4

1.6

Amplitude
Neg Pos

Spectral balancing using spectral components
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This schematic shows how one can reconstruct the original signal by summing over the spectral components, or voices (soprano, alto, tenor, base). Through proper scaling, the original data can be reconstructed. (After Matos and Marfurt, 2011).



Spectral balancing using spectral magnitude components
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Spectral balancing of the NZP&M Kora3d survey. (a) Power spectra of the entire survey after three iterations of structure-oriented filtering. (b) Corresponding power spectra after spectral balancing, using a value of ε=0.01. Equation 4 provides the basis for time-varying spectral balancing using spectral components, a(t,f). As is the case with the algorithm described by Corrao (2011), balancing is done with power P(t,f) = a2(t,f). Within vertical running windows, we compute the average power over all traces and the peak power of the current trace for each spectral component computed. The noise is considered to be a user-defined fraction, ε, of the peak power. This algorithm avoids estimating the wavelet spectrum and instead assumes that the survey is sufficiently large and is either stratigraphically or structurally complex enough that the average reflectivity within the running window is approximately white. This assumption can be violated for small surveys imaging flat, nearly constant reflectivity geology.



Spectral Balancing
0

1

3

2

Ti
m

e 
(s

)
5 km

Original data resample to 2 ms

(Marfurt, 2018)3a-8

Presenter
Presentation Notes
(a) A representative vertical slice through a seismic amplitude volume before spectral balancing. Red arrows indicate migration artifacts associated with operator aliasing. Because they are nearly vertical, these high-amplitude artifacts exhibit a lower apparent frequency. (b) The same vertical slice after spectral balancing, setting ε = 0.01 in equation 4. The low frequencies, below 5 Hz, are rejected, whereas those between 5 and 10 Hz are balanced and tapered, thereby suppressing the stronger steeply dipping migration artifacts indicated by the green arrows. Spectral components are balanced between 10 and 100 Hz, with tapers at the ends applied to the ranges 5 to 10 Hz and 100 to 120 Hz, thereby allowing us to resolve the thin beds indicated by the yellow arrows. Recall that the original data were sampled at Δt = 4 ms, such that the original Nyquist frequency was 125 Hz. Unfortunately, some low-frequency artifacts creep through in the zone indicated by the red arrows. Kora3D data courtesy of New Zealand Petroleum and Minerals (NZP&M). Used by permission.
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Time slice at t = 0.98 s through coherence volumes computed from (a) the original seismic data volume (b) the amplitude data shown in Figure 2b after spectral balancing. The analysis window consists of five traces and 11 samples, or ±12.5 m by ±25.0 m by ±0.010 s. The dashed pink line indicates the location of line , shown in the previous vertical slices. Kora3d data courtesy of New Zealand Petroleum and Minerals (NZP&M)  Used by permission.
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• Spectral balancing 

• Bandwidth extension
 

Poststack Data Conditioning of Migrated Data
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In contrast to spectral balancing that attempts to flatten those components of the measured data that have an acceptable signal-to-noise ratio, bandwidth extension creates spectral components of the data beyond the limits of the original recording. To do so, all bandwidth extension algorithms are based on a model, with the sparse spike model used in predictive deconvolution being one of the most common.
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(Matos and Marfurt, 2011)
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Algorithmic details of most commercial implementations of bandwidth extension are closely guarded with key details not disclosed. Matos and Marfurt (2011) presented a simple method based on the inverse of the continuous wavelet transform. Figure 61 of Chapter 2 showed how one can reconstruct the original seismic data by summing over the voices. To extend the bandwidth, Matos and Marfurt (2011) pick the maxima (or ridges) of each spectral component and convolve them with a broader-band wavelet. This is somewhat like replacing Marfurt’s (band-limited) voice with Caruso’s broad-band voice, resulting in bandwidth extension to both the higher and lower frequencies. The underlying assumption is that the ridges of the original CWT components accurately represent the major impedance changes in the subsurface. For example, if one assumes a blocky reflectivity model, the corresponding sparse spikes measured by a vibrator sweeping from 10 to 80 Hz will occur at the same locations as in the case measured by a vibrator sweeping from 5 to160 Hz. This is the same assumption used in many time-variant deconvolution algorithms. Obviously, reflection events that fall outside the original bandwidth are never recorded and thus cannot be represented by a sparse spike, which means they cannot be reconstructed. After Figure ? of Matos and Marfurt (2011). Used by permission.



Bandwidth extension using inverse CWT “deconvolution”
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(a) A representative vertical slice through a seismic amplitude volume before spectral balancing. Red arrows indicate migration artifacts associated with operator aliasing. Because they are nearly vertical, these high-amplitude artifacts exhibit a lower apparent frequency. (b) The same vertical slice after spectral balancing, setting ε = 0.01 in equation 4. The low frequencies, below 5 Hz, are rejected, whereas those between 5 and 10 Hz are balanced and tapered, thereby suppressing the stronger steeply dipping migration artifacts indicated by the green arrows. Spectral components are balanced between 10 and 100 Hz, with tapers at the ends applied to the ranges 5 to 10 Hz and 100 to 120 Hz, thereby allowing us to resolve the thin beds indicated by the yellow arrows. Recall that the original data were sampled at Δt = 4 ms, such that the original Nyquist frequency was 125 Hz. Unfortunately, some low-frequency artifacts creep through in the zone indicated by the red arrows. Kora3D data courtesy of New Zealand Petroleum and Minerals (NZP&M). Used by permission.
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 An example of bandwidth extension based on the algorithm described in the previous figure, applied here to the same seismic survey shown in Figure 2. Kora3d data courtesy of NZP&M. Used by permission.
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An example of bandwidth extension applied to a survey acquired in the Fort Worth Basin, TX, using the CWT and sparse-spike inversion in the frequency domain. (a) The original seismic data, where a yellow arrow indicates the top of the lower Barnett Shale. (b) The same data, after replacing the wavelets used in a CWT spectral decomposition with a tighter temporal width, broader-bandwidth wavelet in the inverse CWT. (c) The results of a commercial bandwidth-extension algorithm, computed in the frequency domain by using a library of wavelet doublets, as described by Portniaguine and Castagna (2004). Figure courtesy of Marcilio Matos, Sismos. Used by permission.



“Bandwidth extension” using the inverse CWT
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 The same data after bandwidth extension obtained by frequency domain sparse spike inversion using a basis function of reflection doublets (the algorithm commercialized by Fusion as “thinman”). (After Matos and Marfurt, 2011; Data courtesy of Devon Energy).



(Matos and Marfurt, 2011)

Bandwidth extension using a basis-pursuit algorithm 
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The same data after bandwidth extension obtained by rescaling the voices in the CWT. The Barnett Shale is at the level of the dashed yellow line. (After Matos and Marfurt, 2011; Data courtesy of Devon Energy).
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Three simple wedge models. The bottom model is that used by Widess (1978) with reflectors composed of equal and opposite polarity. The middle model is composed of somewhat  weaker reflectors exhibiting the same polarity. The reflectivity of the top model is the sum of the bottom two.



After spectral 
balancing
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Spectral balancing does a nice job of increasing the vertical resolution for all three models. However, it does not attempt to construct any frequency components beyond that originally recorded in the data.



After CWT-based 
bandwidth 
extension
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The same models after bandwidth extension based on concepts of Mallat’s spectral ridges. This algorithm works fine for reflectors that were already well-resolved.  However, artifacts occur at higher (extended frequencies). Other bandwidth extension algorithms based on spectral decomposition adjust the magnitude component (sometimes by using octaves of the desired frequency) but keep the original phase, as we do for spectral balancing. The problem with the lower wedge is that we often construct a higher resolution 90° wavelet in the middle of the wedge rather than the desired 0° and 180° wavelets the define the top and bottom of the wedge.



Review of Chung and Lawton’s (1995) thin-bed (wedge) models
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Four wedge models described by Chung and Lawton (1995) where the thickness ranges from 0 to 50 ms at 1 ms increments and where (a) the reflectors are equal and opposite polarity, (b) the reflectors are equal and the same polarity, (c) the reflectors are unequal and opposite polarity, and (d) the reflectors are unequal and the same polarity. In this example, each wedge has been convolved with a 5-10-40-50 Hz Ormsby wavelet. For thin bed inversion the wedges in  (a) and (b) are convolved with either a well tie source wavelet or with a statistical wavelet, thereby forming 101 basis functions that will be fit to the data at each sample. 



Bandwidth extension based on thin-bed reflectivity inversion

• Traditionally, we represent the response of geologic horizons as a system of spikes 
with an unknown coefficients

• If we know the seismic wavelet, we can estimate the location, polarity, and 
amplitude of these spikes

• We can then apply a bandpass filter to the spikes to generate a higher-resolution 
version of the seismic data

• Alternatively, we can represent the response of geologic layers as a system of 
doublets with unknown coefficients

• If we know the seismic wavelet, we can estimate the location, polarity, and 
amplitude of these doublets

• We can then apply a bandpass filter to the spikes to generate a higher-resolution 
version of the seismic data 

Solve using maximum likelihood least-squares?

Solve using basis pursuit
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Bandwidth extension based on thin-bed reflectivity inversion

(Chopra et al., 2023)3a-25
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Correlation of well curves with seismic data. The blue traces represent the synthetics (generated with the wavelet shown above), whereas the red traces represent the seismic data (a) before, and (b) after bandwidth extension. The correlation coefficients for the ties were 0.745 for (a) and 0.756 for (b). Thus, there is a good correlation between the synthetic and red traces in the time window indicated for both data volumes but note the resolution of additional events after bandwidth extension indicated by the yellow arrows. Figure 3 shows the correlation of well curves with seismic data. 



Original data

(Chopra et al., 2023)3a-26



Data after spectral balancing
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Data after inversion for doublets and bandwidth extension
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Time slice at t=1.66 s through multispectral energy ratio coherence volumes computed from the (a) original seismic data, and (b) the same data after thin-bed reflectivity inversion and bandwidth extension shown in Figure 20c. Both data volumes were also subjected to structure-oriented filtering described later in this chapter.. Notice the superior definition of the lineaments in terms of their continuity and intensity seen on the display in (b). Some of the weak lineaments seen in (a) are better delineated in (b) indicated by yellow arrows. The fault damage zone indicated by magenta arrows is better defined in (b).  (After Chopra et al., 2023).



In Summary:
• Spectral balancing based on time-variant laterally constant operators results in 

amplitude friendly filters that do not negatively impact impedance inversion that use 
different wavelets for targets at different depths

• There are several bandwidth extension algorithms in the marketplace. Most provide 
cosmetically appealing images that increase the bandwidth of resolved horizons but 
do not improve the resolution of thin layers that exhibit tuning phenomena

• At present, it appears that model-based bandwidth extension algorithms using basis 
pursuit algorithms are the only ones that provide improved resolution of thin beds

Post Migration Poststack Data Conditioning – Spectral Balancing
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Summary comments on post-migration data conditioning of post-stack data
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