

Seismic Attributes - from Interactive Interpretation to Machine Learning

Kurt J. Marfurt

Image Enhancement of Faults

Image enhancement of faults

After this section you should be able to:

- Apply simple filters to coherence or other edge-sensitive attributes enhance faults and suppress stratigraphic features parallel to stratigraphy
- Estimate the orientation, and for some algorithms, the heave of individual faults

Ant-tracking

(Marfurt, 2018)

Swarm intelligence and mapping faults

Ants are scattered randomly over the area to be explored. Each ant can make 6*10 steps.

Ants that do find sugar, drop pheromones

(Marfurt, 2018)

Swarm intelligence and mapping faults

More ants arrive. Those who follow the pheromones and find sugar, live and leave more pheromones. Those that don't die after *n* steps.

The process continues until the trail is well marked

Ant-tracking

(b)

(Pedersen et al., 2002)

Fault enhancement using ant-tracking

(Silva et al., 2005)

Convert to pillars or fault segments

(Petrel documentation)

All fault patches extracted using ant-tracking

(Silva et al., 2005)

Fault patch artifacts associated with acquisition footprint

The filtered fault sets

(Silva et al., 2005)

Ant-tracking applied to volumetric curvature

(Baruch et al., 2009)

Estimating fault probability, heave, and throw

(1) Computing fault images,

- (2) Constructing fault samples,
- (3) Constructing fault surfaces,
- (4) Estimating fault dip slips,
- (5) Unfaulting the seismic image to assess the accuracy of those slip vectors.

Fault squares

Linked fault squares

Filling in the holes

Fault squares

Linked fault squares

Filling in the holes

Structure-oriented filtered volume

(Wu and Hale, 2016)

Fault likelihood

Fault likelihood

Removed fault displacement

Image enhancement for fault extraction

Time slices

- Coherence computation
 Suppression of horizontal discontinuities
- 3. Image dilation
- 4. Image erosion.
- 5. Merge with seismic in workstation

(Barnes, 2006)

3b-20

Fault Enhancement using a directional Laplacian of a Gaussian

- Compute a volumetric attribute sensitive to faults or axial planes
- Extract a spherical analysis window about each voxel
- Compute eigenvectors and eigenvalues of the second moment tensor
- Smooth parallel to the fault using a rotated Gaussian
- Sharpen perpendicular to the fault using a direction Laplacian of a Gaussian
- (Optionally) apply a filter to enhance or reject features parallel or perpendicular to structural dip
- Co-render sharpened planar feature with its dip magnitude and dip azimuth

Dynamics of an asteroid

Center of mass, **µ**:

Inertia tensor, I:

$$I_{ij} = \frac{\sum_{k=1}^{K} (x_{ik} - \mu_i)(x_{jk} - \mu_j)\rho_k}{\sum_{k=1}^{K} \rho_k}$$

Principal axes of inertia tensor, \mathbf{v}_n :

$$\sum_{j=1}^{3} I_{ij} v_{jn} = \lambda_n v_{in}$$

(https://svs.gsfc.nasa.gov/2061)

3b-22

Dynamics of a cloud of energy-weighted fault probability anomalies, $ep \equiv e(1-c)$

Center of mass, µ:

Inertia tensor, I:

$$I_{ij} = \frac{\sum_{k=1}^{K} (x_{ik} - \mu_i)(x_{jk} - \mu_j)e_k p_k}{\sum_{k=1}^{K} e_k p_k}$$

Principal axes of inertia tensor, \mathbf{v}_n :

$$\sum_{j=1}^{3} I_{ij} v_{jn} = \lambda_n v_{in}$$

3b-23

Edge enhancement filters applied to a photo

Gaussian

Laplacian of Gaussian

(Marfurt, 2018)

The 3D directional Laplacian of a Gaussian operator

■ Normal fault

Seismic amplitude

Co-rendered seismic amplitude and original coherence (5 traces, 1 complex sample)

Original coherence (5 traces, 1 complex sample)

Fault probability (iteration 1)

Fault probability (iteration 2)

Fault probability (iteration 3)

Co-rendered seismic amplitude and fault probability iteration 3

Corendered seismic amplitude and original coherence (5 traces, 1 complex sample)

Corendered seismic amplitude and fault probability iteration 3

Polygonal faulting (using a box probe)

(Machado et al., 2016)

3b-37

Original amplitude

SOF amplitude

(Courtesy Jie Qi, OU)

0

Coherence (original)

t=1 s

Directional LoG skeletonization result

(Courtesy Jie Qi, OU)

3b-48

(Qi, 2018)

(Qi, 2018)

(Qi, 2018)

Corendered fault probability, dip magnitude and dip azimuth

(Qi, 2018)

3b-56

Fault probability

3b-57

Interpreter-picked fault sticks

Extracted surfaces from fault probability

Pitfalls in correlating an engineering or geologic property with cyclical attributes

Correlating an engineering or geologic property with cyclical attributes

Discontinuities when defining a fault plane by its dip and azimuth

Pitfall: Dip azimuth values flip about vertical faults Vector display using an HSL color model resulting in polarity flips

Partial solution: Generate fault orientation components North strike component: $cos(2\sigma)$; $\sigma=\psi+90^{\circ}$

Partial solution: Generate fault orientation components East strike component: $sin(2\sigma)$; $\sigma=\psi+90^{\circ}$

Partial solution: Generate fault orientation components Horizontal dip component: $cos(\vartheta)$

Partial solution: Generate fault orientation components Vertical dip component: $sin(\vartheta)$

Image enhancement of faults

In Summary:

- By using iterative application of larger analysis windows, image enhancement filters can
 - fill in the holes seen in coherence images when unrelated stratigraphic reflectors correlate across a fault, and
 - minimize the stairstep artifacts associated with the seismic wavelet being imaged perpendicular to the reflector.
- Eigenvectors of the 2nd moment tensor computed from coherence volumes provides
 - estimates of fault dip and azimuth, and
 - a means to directionally sharpen or smooth the fault
- Skeletonization converts diffuse fault edges into sharper surfaces
- Fault enhancement is not limited to coherence images, but can be applied to curvature volumes to better map fold axes
- Fault enhancement algorithms can also enhance footprint!