

Seismic Attributes - from Interactive Interpretation to Machine Learning

Rafael Pires de Lima and Kurt J. Marfurt (The University of Oklahoma)

Deep Learning and Convolutional Neural Networks

■ TensorFlow

Common activation functions (that answer a binary question)

A simple example using TensorFlow and simple data patterns

A more difficult example using simple data patterns

Strategy #1: Adding nonlinearity to the input

Strategy #2: Adding a hidden layer of neurons

Examining the output of each neuron

Adding a 2nd neuron in hidden layer 2 (tanh activator).

Adding a 2nd neuron in hidden layer 2 (ReLU activator).

■ Example 1: Classification of fusilinids

Convolution of pixels in a photograph at two locations

*

0	0	0	0	0	0
0	10	10	5	5	0
0	12	12	10	10	0
0	14	14	20	20	0
0	16	16	20	20	0
0	0	0	0	0	0

-1	0	1
-1	0	1
-1	0	1

22	-7	-7	-15
36	-1	-1	-35
42	8	8	-50
30	10	10	-40

Convolution of pixels in a photograph using a running window

0	0	0	0	0	0
0	10	10	5	5	0
0	12	12	10	10	0
0	14	14	20	20	0
0	16	16	20	20	0
0	0	0	0	0	0

-1	0	1
-1	0	1
-1	0	1

*

22	-7	-7	-15
36	-1	-1	-35
42	8	8	-50
30	10	10	-40

Convolution

Output = $0^{*}(-1) + 0^{*}0 + 0^{*}1 + 0^{*}(-1) + 10^{*}0 + 10^{*}1 + 0^{*}(-1) + 12^{*}0 + 12^{*}1 = 22$

(Pires de Lima et al., 2020)

Convolution with 3D (3-component or RGB image) input

where:

0	0	0	
0	1	0	
0	0	0	

(Pires de Lima et al., 2020)

Common PhotoShop filters based on convolutions

(Pires de Lima et al., 2020)

■ Networks of neurons

Visualizing application of a single neuron

Step 1: Linear distortion of the input attribute data **x**:

z = (Wx+b)

where the "weight" matrix **W** is equivalent to convolution and where the rotated and scaled result is translated (biased) the vector **b**

Step 2: Point-wise application using a tanh
activator function:
 r=tanh(z)

(http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/)

Visualizing the application of four neurons

- Originally the two classes are "entangled" and cannot be separated by a linear discriminator
- After applying linear transformation and space distortion (four hidden layers) we can separate the two classes with a planar surface

(http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/)

Activation function

Activation function: Elementwise multiplication

Pooling" multiple input values into a single output

There are different ways to pool the data, including:

- Maximum
- Minimum
- Mean

• Median

0	0	0	0	0	0
0	10	10	5	5	0
0	12	12	10	10	0
0	14	14	20	20	0
0	16	16	20	20	0
0	0	0	0	0	0

10

20

An example of pooling

Max pooling (maximum value in a subset window) is a common choice

300x300 pixels

Max pooling

150x150 pixels

A very simple ("incomplete") Convolutional Neural Network

Input

Class 1

A not-so-deep convolutional neural network

Example

Deep Convolutional Neural Networks

https://ai.googleblog.com/2016/08/improving-inception-and-image.html

(Szegedy et al., 2015)

(Inception V3)

Deep Convolutional Neural Networks

ResNetV2-50

https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html

Transfer learning from the V-3 CNN classifier

(Modified from Oquab et al., 2014)

Oklahoma Petroleum Information Center

Let's apply our method to some Mississippi Lime core analyzed by OGS petroleum geologist Fnu Suriamin

Core analysis workflow

Core analysis (Mississippi Lime play, Oklahoma)

(Pires de Lima et al., 2018)

Augmenting the training data through rotation

Original image

Flipped horizontally

Flipped vertically

Augmenting the training data through rotation

Original image Rotated -5°

Flipped horizontally Rotated -5°

Flipped vertically Rotated -5°

(Rafael Pires de Lima et al., 2018)

=

Augmenting the training data through rotation

Original image Rotated +5°

Flipped horizontally Rotated +5°

Flipped vertically Rotated +5°

A Bedded skeletal peloidal packstone-grainstone sample image from the core not used in the CNN training.

Lithofacies	Probability
Bedded skeletal peloidal	
packstone-grainstone	0.82
Chert breccia in greenish	,
shale matrix	0.15
Spiculitic mudstone-	
wackestone	0.02
Splotchy packstone-	
grainstone	0.01

A spiculitic mudstone-wackestone sample image from the core not used in the CNN training.

Lithofacies	Probability
Bedded skeletal peloidal	
packstone-grainstone	0.01
Chert breccia in greenish	
shale matrix	0.02
Spiculitic mudstone-	
wackestone	0.89
Splotchy packstone-	
grainstone	0.08

A splotchy packstone-grainstone sample image from the core not used in the CNN training.

Aller A	1100000	
一些		
	Ser 1	En ja
	and the second	1/32
1-	Sola	
and a	1 inch	
Contraction of the	the man	5 2 12 2

Lithofacies	Probability
Bedded skeletal peloidal	
packstone-grainstone	0.00
Chert breccia in greenish	
shale matrix	0.07
Spiculitic mudstone-	
wackestone	0.02
Splotchy packstone-	
grainstone	0.91

Training and test (validation) data

Class	Lithofacies	Training set	Test set
01	Chert breccia in greenish shale matrix	*218	3
02	Chert breccia	*236	3
03	Skeletal mudstone-wackestone	*258	4
04	Skeletal grainstone	*160	3
05	Splotchy packstone grainstone	*344	4
06	Bedded skeletal peloidal packstone-grainstone	*416	4
07	Nodular packstone-grainstone	445	11
08	Skeletal peloidal packstone-grainstone	not used	not used
09	Bioturbated skeletal peloidal packstone-grainstone	795	19
10	Bioturbated mudstone-wackestone	*150	4
11	Brecciated spiculitic mudstone	not used	not used
12	Intraclast spiculitic mudstone	not used	not used
13	Spiculitic mudstone-wackestone	3077	79
14	Argillaceous spiculitic mudstone-wackestone		
15	Glauconitic sandstone	not used	not used
16	Shale	790	17
17	Shaly claystone	765	17
Total number of samples in each set		6888	151

Examples of the classification performed by the retrained ResNetV2

An example of misclassification

Skeletal mudstonewackestone

Example of Class 06 Bedded skeletal peloidal packstone-grainstone

1 inch 16 17 13 14 10 09 07 · Class 06 05 04 03 02 01 0.00 0.25 0.50 0.75 1.00 Probability

Example of Class 03 Skeletal mudstone-wackestone Training Example

Confusion matrix of retrained Cl

Very good concordance between labels provided by the expert and class assigned by the CNN

- 1.0

Pitfalls: Can you identify this rock?

Carpet classification and examples of class 04

Next steps: Construct a geologist confusion matrix

■ What about seismic amplitude patterns?

Salt segmentation – training and test slices

(Waldeland et al., 2018)

Salt segmentation – training and test slices

(Waldeland et al., 2018)

Salt is relatively insensitive to nonstationary source wavelet

Progress in seismic facies classification (F3 data volume)

(Zhang et al., 2021)

Progress in seismic facies classification (F3 data volume)

0

8

Prediction far from training

(Zhang et al., 2021)

Conclusions

- CNN is not magic
 - The convolutions used are similar to those used in PhotoShop and in seismic attribute analysis
 - "Pooling" is not unlike blocking and smoothing used in well log analysis
 - The activations are the same kind of "thresholds" interpreters use in predicting lithofacies from gamma ray logs (e.g. sandstone, mudstone, shale)
- CNN is currently the best option to perform 2D image classification
- CNN is not perfect; there will be misclassifications (OK for fossils, but not for cars!)
- Training data are tedious to generate; it is common to use a pretrained CNN and simply apply it to their data
- CNN will not replace the expert interpreter
 - Interpreters will be needed to train the network
 - Interpreters will be able to analyze vastly greater amounts of data
 - Interpreters will be needed to quality control the results

Traditional shallow learning vs. deep learning

