
Deep Learning and Convolutional Neural Networks

Rafael Pires de Lima and Kurt J. Marfurt
(The University of Oklahoma)

Seismic Attributes - from Interactive Interpretation
to Machine Learning

18a-1

Presenter
Presentation Notes
The bulk of this presentation was constructed by Rafael Pires de Lima as part of an OU seminar on deep learning.

TensorFlow

18a-2

Presenter
Presentation Notes
TensorFlow was developed by Google Brain and released to the public in 2017. While the original application runs on single devices, TensorFlow can run on multiple CPUs and graphics processing units (GPUs) under Linux, Windows, and other operating systems. Most users access TensorFlow using python applications. There are several freely available 3rd party libraries that call TensorFlow routines.

Common activation functions (that answer a binary question)

18a-3
Yes!No!

Presenter
Presentation Notes
Examples of commonly used activation functions. Note the sum of softmax is 1, so its appearance varies according to the horizontal axis (range and sample rate).

Neural networks

(https://playground.tensorflow.org/)18a-4

A simple example using TensorFlow and simple data patterns

Presenter
Presentation Notes
You can play with neural networks in the TensorFlow playground. In this simple example, we provide the x1 and x2 coordinates of the data points. Note the neural network very quickly is able to separate the data into two classes where the discriminator defines the location of the activation function that separates “yellow class” from “not yellow class” which here we call the “blue class”. In this example there is both “low loss” (small mean-squared or cross-entropy error), and “high accuracy” (all of the samples are correctly predicted).Rafael: usually mean-squared error loss is used for regression problems and cross-entropy loss is used for classification problems

18a-5

A more difficult example using simple data patterns

(https://playground.tensorflow.org/)

Presenter
Presentation Notes
In this example the class separation is much more difficult. When we provide the x1 and x2 coordinates of the data points, there is “high loss”. A single discriminator is insufficient to separate the two classes.

18a-6

Strategy #1: Adding nonlinearity to the input

(https://playground.tensorflow.org/)

Presenter
Presentation Notes
Instead of using the x1 and x2 coordinates as the attributes or “features” of the data points, let’s use “feature engineering” to help the network by adding a new attribute x1x2. Note that most of the weight (thick line) comes from the new x1x2 attribute. We observe loss and are now able to separate the classes. Such tricks are not uncommon in conventional neural network workflows. For example, the Hampson Russell (CGG Geosoft) program Emerge allows one to compute the square, square root, logarithm, exponent, and reciprocal of any input attribute. If you have used support vector machine software, it too will use powers and cross products of attributes to help differentiate clusters (e.g. Perez-Altamar et al., 2015; Snyder, 2016). Finally, although only two elastic parameters, say ZP and ZS are truly independent, better clustering can often be included by supplying values of vP/vS, Poisson’s ratio, λρ, and/or μρ as well. (e.g. Roy et al., 2016).But what if we don’t know what are the necessary feature engineering / space modifications we need to do to help the neural network?

18a-7

Strategy #2: Adding a hidden layer of neurons

(https://playground.tensorflow.org/)

Presenter
Presentation Notes
Instead of adding nonlinearity to the input data, we can add nonlinearity to the process to better separate the classes using the original “raw data.” To do so, we need to add more layers and neurons.The “neurons” include the weights W and biases b and the activation function (g). The output of the neuron is h = g(Wx+b), where g is the activation function and that is actually the reason for the color. The color coded is based on neuron output values (blue or not blue). Due to the choice of activation function (ReLU) we do not see negative values in this example. Because the “discretize output” is selected, we do not see zeros as well. The next slide shows a very similar architecture in the next slide, but changed the activation function and did not discretize the output. There are some “variations” for counting the number of layers. This image shows two hidden layers (the blue squares). The network also has an unplotted “output neuron” (easier to see by going into playground and increasing the number of neurons for the second hidden layer).

18a-8

Examining the output of each neuron

Presenter
Presentation Notes
In this slide, the square for each neuron containes the output of that neuron g(Wx+b), where x is the input vector from the previous layer and g is the activation function. The second hidden layer (the one with only 1 neuron) pretty much got the necessary output, almost like the x1x2 attribute shown previously.

18a-9

Adding a 2nd neuron in hidden layer 2 (tanh activator).

Presenter
Presentation Notes
There are some “variations” for counting the number of layers. This image shows two hidden layers (the first contains 4 neurons and the second 2 neurons). The network also has an “output neuron” that takes in the results from the second hidden layer to produce the final classification output.

18a-10

Adding a 2nd neuron in hidden layer 2 (ReLU activator).

Presenter
Presentation Notes
Here I just changed the activation function from Tanh shown in the previous slides to ReLU. The outputs of the neurons now exhibit zero (white) or positive (blue) values. As he increased the complexity of the network, Rafael had trouble obtaining the correctanswer for that dataset with the sigmoid function so he changed it to ReLU. The maximum of the derivative of the sigmoid is 1/4 (image in https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e), so if we stack more layers the maximum gradient decreases to zero quite rapidly (vanishing gradient). The main advantage of ReLU over sigmoid or tanh functions is that ReLU helps with vanishing and exploding gradients. ReLU also tends to show better convergence performance than sigmoid (http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf, Figure 1).

Example 1: Classification of fusilinids

RGB composed image Red channel Green channel Blue channel

18a-11 (Pires de Lima et al., 2020)

Presenter
Presentation Notes
The left color photo is of a thin section of a fusulinid fossil. Any color image can be decomposed into it three red, green, and blue components. Each of these component images have values that range between 0 and 255.

Convolution of pixels in a photograph at two locations

*
-1 0 1

-1 0 1

-1 0 1
=

0 0 0 0 0 0

0 10 10 5 5 0

0 12 12 10 10 0

0 14 14 20 20 0

0 16 16 20 20 0

0 0 0 0 0 0

22 -7 -7 -15

36 -1 -1 -35

42 8 8 -50

30 10 10 -40

18a-12

Amplitude

Positive

Negative

(Pires de Lima et al., 2020)

*
-1 0 1

-1 0 1

-1 0 1
=

0 0 0 0 0 0

0 10 10 5 5 0

0 12 12 10 10 0

0 14 14 20 20 0

0 16 16 20 20 0

0 0 0 0 0 0

22 -7 -7 -15

36 -1 -1 -35

42 8 8 -50

30 10 10 -40

22 -7 -7 -15

36 -1 -1 -35

42 8 8 -50

30 10 10 -40

22 -7 -7 -15

36 -1 -1 -35

42 8 8 -50

30 10 10 -40

22 -7 -7 -15

36 -1 -1 -35

42 8 8 -50

30 10 10 -40

18a-13

Amplitude

Positive

Negative

Convolution of pixels in a photograph using a running window

(Pires de Lima et al., 2020)

Presenter
Presentation Notes
A channel in an image is essentially a matrix with values for that image. This slide shows how a convolution (indicated by the asterisk) works for 2D data. Many seismic filters and seismic attributes are based on such a sliding operator window that multiplies the input data by a set of predefined coefficients. Examples include smoothing, sharpening, and spectral decomposition. Click to animate.

Convolution

Output = 0*(-1) + 0*0 + 0*1 + 0*(-1) + 10*0 + 10*1 + 0*(-1) + 12*0 + 12*1 = 22

18a-14 (Pires de Lima et al., 2020)

Presenter
Presentation Notes
This is another view of how convolutions work. The kernel “overlays” the input data, elements are multiplied (based on such overlay) and summed. The result of the convolution is a scalar.

-1 0 1

-1 0 1

-1 0 1

Convolution with 3D (3-component or RGB image) input

* =

=
0 0 0

0 1 0

0 0 0
=

0 0 0

0 1 0

0 0 0
=

18a-15

where:

(Pires de Lima et al., 2020)

Presenter
Presentation Notes
Convolution of images with an edge enhancement operator. The top panel represents the convolution of the input with RGB kernels and the resulting image. Values of RGB kernels are showed in the bottom panel. The red input channel in input is convolved with red kernel, the green channel with green kernel, and the blue channel with blue kernel. The resulting image shows the horizontal edges in the red channel, while the green and red components remain unchanged.Rafael: In practice, the result of a convolution is a single-channel image obtained by summing the RGB components. In this presentation I choose to maintain the channels separated for illustration purposes.

Common PhotoShop filters based on convolutions
Original Blur

 Sharpen Edges

18a-16 (Pires de Lima et al., 2020)

Presenter
Presentation Notes
Original image and result of different image processing techniques processed available in most digital camera software. All the processed images are results of various types of convolutions.

Networks of neurons

Input

Output
Neuron

Linear Nonlinear

Activation
function

Weights

Hidden
layer

Hidden
layer

Inputs

Output

18a-17

A single neuron An artificial neural network

Presenter
Presentation Notes
As some of the images before might have depicted, a neuron is a combination of a linear transformation followed by a non-linear transformation. Stacking these neurons in layers and then cascading such layers generates deep neural networks.(Left) Visual representation of neuron and (Right) an artificial neural network. The number of neurons and layers in the right image are arbitrary (as well as number of inputs). Consider, for example, that each one of the circles in the input represents RGB colors for an image plus a bias term. Next, assume that the three RGB images and a bias are sufficient to differentiate objects and assign them to different classes.

Visualizing application of a single neuron

http://colah.github.io/posts/2014-03-NN-Manifolds-Topolo

Step 1: Linear distortion of the input
attribute data x:

z = (Wx+b)
where the “weight” matrix W is
equivalent to convolution and where
the rotated and scaled result is
translated (biased) the vector b

Step 2: Point-wise application using a tanh
activator function:

r=tanh(z)

18a-18 (http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/)

Presenter
Presentation Notes
The components of a neuron which consists of a linear transformation followed by a “space distortion.”

Visualizing the application of four neurons

• Originally the two classes are
“entangled” and cannot be separated by
a linear discriminator

• After applying linear transformation and
space distortion (four hidden layers) we
can separate the two classes with a
planar surface

(http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/)18a-19

Presenter
Presentation Notes
Another example of a neuron.A neuron consists of a linear transformation followed by a “space distortion.”

Activation function

* =

Activation function:
Elementwise multiplication

18a-20 (Pires de Lima et al., 2020)

Presenter
Presentation Notes
Visual representation of the image transformation occurring when an image goes through a single convolution neuron. In this example, the fusilinid image is convolved with the kernel presented in a previous slide. The result of the convolution then goes through the activation function in which every pixel has its values scaled. Note how the resulting image after the activation function is similar to the one in a previous image using this simple (but nonlinear) rescaling process.

“Pooling” multiple input values into a single output

0 0 0 0 0 0

0 10 10 5 5 0

0 12 12 10 10 0

0 14 14 20 20 0

0 16 16 20 20 0

0 0 0 0 0 0

12 10

16 20

“Max” pooling

3x3 kernels
applied using

stride 3

There are different ways to pool the data, including:
• Maximum
• Minimum
• Mean
• Median

18a-21

Presenter
Presentation Notes
A representation of the “max pooling” operation, where the output is simply the maximum value of a subset of the input. Colors are used to facilitate visualization. Different strides and padding techniques can be used with pooling layers, as well as different statistics (minimum, average, median, or other statistical measures). Rafael finds that although minimum and median could theoretically be used, he has never seen such applications. Most popular frameworks (TensorFlow and PyTorch) implement maximum and average pooling. He thinks the median would work too, but it seems no one uses them. He hypothesizes that the reason to not use minimum may be related to the sensitivity of the backpropagation and activation functions.

An example of pooling

300x300 pixels

150x150 pixels

Max pooling

2x2 kernels stride 2

Max pooling (maximum value in a subset window) is a common choice

18a-22

Presenter
Presentation Notes
Max pooling of the image result shown in a previous slide. Note that the image is essentially the same, but that the colors are slightly different and that the image size (height and width) has been reduced.

A very simple (“incomplete”) Convolutional Neural Network

Input

3 x 3
convolution

Max
pooling

Output

18a-23

Presenter
Presentation Notes
A simple flowchart representing of the operations applied to the input fusulinid image. In this example, the 3 x 3 convolution block also includes the activation function. In the max pooling process, the maximum value of a subset of the input is stored and the image’s size (height and width) is reduced.

Three distinct classes
Class 1

Class 2

Class 3

18a-24

Presenter
Presentation Notes
Set of images used in toy CNN example. We highlighted the image in class 3 that is used as example in figure 3. As all images are very similar in their set, this is an easy task for CNN models and we can achieve high accuracy with a simple network. Class 1: Chert breccia in greenish shale matrixClass 2: ShaleClass 3: Bioturbated mudstone-wackestone

A not-so-deep convolutional neural network

180 x 180 x 3 178 x 178 x 6

Convolution 1

3 x 3 x 3
Strides: 1 x 1

89 x 89 x 6

Max Pooling

2 x 2
Strides: 1 x 1

89 x 89 x 3

Convolution 2

3 x 3 x 6
Strides: 1 x 1

Max Pooling

2 x 2
Strides: 1 x 1 43 x 43 x 3

Flatten
⋮

Softmax
3

a b

c
d

5547 x 1

Dense

18a-25

Presenter
Presentation Notes
A simple convolutional neural network. The golden hexagons show images displayed in the next figure. In this toy example, a set of images with size 180 x 180 pixels is input to a CNN with six layers. The first layer is a set of six convolution kernels with size 3 x 3 x 3. The value of the third dimension is the same as the value of the number of channels of the previous layer. Note that after the first convolution the object reduces in height and width, but its number of channels increases. For the next step, a MaxPooling (an operation in which we extract the maximum value of a submatrix of the input) further reduces the height and width. This “thinner” object is then input to another convolution layer following by another MaxPooling. After the last MaxPooling, the layer is then flattened, meaning all its values are stored as a single vector. The last layer uses as input all the values of the flattened vector to compute the probability that the input image belongs to one of three classes. Note that with this architecture whatever is used as input will output some probability of belonging to one of the three classes. The kernels of the convolutional layers and the softmax of the last layer are the parameters that need to be trained for this neural network. In this example, we need to train a total of 16977 parameters. For Convolution 1, we need to train 3 x 3 x 3 x 6 + 6 (bias) = 168 parameters. For Convolution 2, 165 parameters. The dense layer is responsible for 16644 parameters that need training.

Example

b

c

a

Flatten-Dense

Probability results:

Class 1: 0.00
Class 2: 0.00
Class 3: 1.00

d

18a-26

Presenter
Presentation Notes
Simplified workflow and resulting images extracted from different layers when the figure on top left is input to the CNN showed in figure ?? after training. The golden hexagons can be used for easier reference between this figure and figure ??. Note how the set of weights (the convolutional kernels) learned by this CNN learns how to identify edges in the input image. This is a common behavior in CNN when used with natural images (citation). In a sense, much as a trained geologist, the CNN learns how to identify different patterns. Note the image in frame a. is a simple decomposition of the original image, therefore we choose to display them as originally with red-green-blue color. The images in frames b and c are results of different “filters” applied in different steps of the CNN and are composed of single channel. We choose to display these images as grayscale.

Deep Convolutional Neural Networks

• Inception V3

https://ai.googleblog.com/2016/08/improving-inception-and-image.html (Szegedy et al. , 2015)

18a-27 (Inception V3)

Presenter
Presentation Notes
Rafael used the Inception V3 network. It is a complex (but with computationally efficient) architecture. As you can see, there are a lot of layers and even a branch that can be used to check for inconsistencies (bottom branch).As per their abstract “…a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. “

Deep Convolutional Neural Networks
ResNetV2-50

https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html18a-28

Transfer learning from the V-3 CNN classifier

Fossil images
(102 images)

(Modified from Oquab et al., 2014) 18a-29

Presenter
Presentation Notes
One of the problems we may face when trying to use convolutional neural networks is the limited amount of training data available. To address this limitation, we use “transfer learning” which uses what a CNN learned for a previous application and applies it to a secondary process. We “transfer” these learned weights (the “convolution kernels”) to our problem and then add our more limited number of our target fossil (and in our later application, core) images of interest. The greater number of images and the computational time used during training of Inception V-3 make it a powerful tool to be used in image classification tasks. The right column (green box for top row, yellow box for bottom row) exhibits some of the classes that the CNN can choose (top row using the original inception V-3 CNN classifier, bottom row using our retrained classifier). (image is a modification of Oquab et al. (2014) Figure 2)

Oklahoma Petroleum Information Center

Let’s apply our method to
some Mississippi Lime core
analyzed by OGS petroleum
geologist Fnu Suriamin

18a-30

Presenter
Presentation Notes
OPIC is part of the Oklahoma Geological Survey, which in turn is part of the Mewbourne College of Earth and Energy within the University of Oklahoma. This resource contains over 100 miles of core (most from the midcontinent) and is not only available to the industry at minimal cost, but can be used by faculty and students to support their research. The samples analyzed in this study are all stored at OPIC. Specifically, we will use the “labels” applied to core by Oklahoma Geological Survey petroleum geologist Fnu Suriamin as our training and validation data.

Core analysis workflow

ImageNet
Labeled data
(106 images)

Core images

Trained
CNN

models

Image processing
and augmentation

Labeled core database
(103 images)

Transfer learning

Core-adapted
CNN

Train classification
layer with core data

18a-31 (Rafael Pires de Lima et al., 2018)

Presenter
Presentation Notes
Flowchart summarizing the methodologies we used in this paper. We collected original images from different collections, applied simple image processing and data augmentation to generate our core and fusulinid databases. Coming from the right side, the CNN we use as starting point (Szegedy et al.’s. (2015) Inception V-3) was trained with millions of images. We used transfer learning to create our fusulinid-tailored and core-tailored CNN models.

Core analysis (Mississippi Lime play, Oklahoma)

(Pires de Lima et al., 2018)18a-32

Presenter
Presentation Notes
Figure showing how we augmented and standardized the amount of data by splitting the core in squared cropped images using a sliding window. This approach helps the CNN to access more training data and, used with care, will not force the CNN to overfit the data. The blue rectangle shows images that were never used during training (test data). The green arrow indicates the image presented in Figure 3. Separation of testing data was the same for the other three lithofacies used in this project. (Pires de Lima et al., 2018).

Augmenting the training data through rotation

Original image Flipped horizontally Flipped vertically

18a-33 (Pires de Lima et al., 2018)

Presenter
Presentation Notes
Our original images are aligned with the axis of the borehole. In most cases, the orientation of the core has little to do with the direction of sediment transport. Likewise, in general, the borehole will not be perpendicular to the sedimentary bedding plane. We therefore augment our training data by taking each image and flipping it about the horizontal and vertical axis and then rotating them at discrete angles, thereby minimizing any bias in the data sampling.

Augmenting the training data through rotation

Original image
Rotated -5°

Flipped horizontally
Rotated -5°

Flipped vertically
Rotated -5°

18a-34 (Rafael Pires de Lima et al., 2018)

Presenter
Presentation Notes
Images in the previous slide rotated -5°.

Augmenting the training data through rotation

Original image
Rotated +5°

Flipped horizontally
Rotated +5°

Flipped vertically
Rotated +5°

18a-35 (Rafael Pires de Lima et al., 2018)

Presenter
Presentation Notes
Images in a previous slide rotated +5°.

A Bedded skeletal peloidal packstone-grainstone sample image from
the core not used in the CNN training.

Lithofacies Probability
Bedded skeletal peloidal
packstone-grainstone 0.82
Chert breccia in greenish
shale matrix 0.15
Spiculitic mudstone-
wackestone 0.02
Splotchy packstone-
grainstone 0.01

18a-36 (Rafael Pires de Lima et al., 2018)

A spiculitic mudstone-wackestone sample image from the core not
used in the CNN training.

Lithofacies Probability
Bedded skeletal peloidal
packstone-grainstone 0.01
Chert breccia in greenish
shale matrix 0.02
Spiculitic mudstone-
wackestone 0.89
Splotchy packstone-
grainstone 0.08

18a-37 (Rafael Pires de Lima et al., 2018)

A splotchy packstone-grainstone sample image from the core not
used in the CNN training.

Lithofacies Probability
Bedded skeletal peloidal
packstone-grainstone 0.00
Chert breccia in greenish
shale matrix 0.07
Spiculitic mudstone-
wackestone 0.02
Splotchy packstone-
grainstone 0.91

(Rafael Pires de Lima et al., 2018)18a-38

Using (almost all) lithofacies described
Class Lithofacies Training set Test set
01 Chert breccia in greenish shale matrix *218 3
02 Chert breccia *236 3
03 Skeletal mudstone-wackestone *258 4
04 Skeletal grainstone *160 3
05 Splotchy packstone grainstone *344 4
06 Bedded skeletal peloidal packstone-grainstone *416 4
07 Nodular packstone-grainstone 445 11
08 Skeletal peloidal packstone-grainstone not used not used
09 Bioturbated skeletal peloidal packstone-grainstone 795 19
10 Bioturbated mudstone-wackestone *150 4
11 Brecciated spiculitic mudstone not used not used
12 Intraclast spiculitic mudstone not used not used
13 Spiculitic mudstone-wackestone

3077 79
14 Argillaceous spiculitic mudstone-wackestone
15 Glauconitic sandstone not used not used
16 Shale

789 17
17 Shaly claystone
Total number of samples in each set 6888 15118a-39

Training and test (validation) data

1 inch

Examples of the classification performed by the retrained ResNetV2
Nodular packstone-

grainstone
Bioturbated

mudstone-wackestone Chert breccia
Skeletal mudstone-

wackestone

1 inch1 inch1 inch

18a-40

Presenter
Presentation Notes
Examples of the classification performed by the retrained ResNetV2. In (a), the CNN very confidently assigned the image to the correct class (class 07, Nodular packstone-grainstone). In (b), again the CNN provides a high level of confidence to assign the image to the correct class (class 10, Bioturbated mudstone-wackestone). In (c), the CNN still assigns the image to the correct class, but with lower confidence (class 01, Chert breccia in greenish shale matrix is the correct class). The image in (d) shows one example in which the CNN failed to correctly assign the class. The CNN assigned a higher confidence for class 03 (Skeletal mudstone-wackestone, with 0.45 probability) whereas the correct class is actually class 06 (Bedded skeletal peloidal packstone-grainstone, 0.29 probability)

1 inch

An example of misclassification

Example of Class 03
Skeletal mudstone-wackestone
Training Example

Example of Class 06
Bedded skeletal peloidal
packstone-grainstone

18a-41

Skeletal mudstone-
wackestone

Presenter
Presentation Notes
Examples of the classification performed by the retrained ResNetV2. In a, the CNN very confidently assigned the image to the correct class (class 07, Nodular packstone-grainstone). In b, again the CNN provides a high level of confidence to assign the image to the correct class (class 10, Bioturbated mudstone-wackestone). In c, the CNN still assigns the image to the correct class, but with lower confidence (class 01, Chert breccia in greenish shale matrix is the correct class). The image in d shows one example in which the CNN failed to correctly assign the class. The CNN assigned a higher confidence for class 03 (Skeletal mudstone-wackestone, with 0.45 probability) whereas the correct class is actually class 06 (Bedded skeletal peloidal packstone-grainstone, 0.29 probability)

Confusion matrix of retrained CNN

Very good concordance between
labels provided by the expert and
class assigned by the CNN

18a-42

Pitfalls: Can you identify this rock?

18a-43

Presenter
Presentation Notes
Can you identify this picture?This is actually a photgraph of the carpet in Sarkeys 8th floor. The CNN does not know that and assumes is one of the things “it knows”.Class 4: Skeletal grainstone

Carpet classification and examples of class 04

a b
18a-44

Presenter
Presentation Notes
(Left) Photo and classification of a carpet and (Right) examples of images from the class 4 training dataset. Class 4: Skeletal grainstone

Next steps: Construct a geologist confusion matrix

18a-45

Presenter
Presentation Notes
Interpretations can be slightly different when performed by different geologists. So besides comparing our retrained CNN with the labels provided by Ming, can we compare the results with interpretation from other geologists?

What about seismic amplitude patterns?

18a-52

Presenter
Presentation Notes
This is an image of an autoencoder used in image classification to “segment” the data into different objects. Autoencoders pass the image through a series of convolutions but don’t use fully connected layers at the end. We can put seismic on the left and get “channels” on the right.

Training is one vertical slice from
3D seismic amplitude volume

Center pixel (this inline)
is “not salt”

Center pixel (this inline)
is “salt”

(Waldeland et al., 2018)

Salt segmentation – training and test slices

Presenter
Presentation Notes
CNN is also being used successfully to delineate salt bodies. In this work by Waldeland et al. (2018) the training data are (Left) polygons defining the extent of the salt body defined by the human interpreter. This manual interpretation was reproduced from a paper by Rojo et al. (2016). (Right) The results of CNN testing. No postprocessing was applied to the predicted salt pixels.

(Waldeland et al., 2018)

Salt segmentation – training and test slices

Presenter
Presentation Notes
(a–c) Waldeland et al.’s (2018) classification results of the salt body (marked with red). (d) The predicted full 3D salt body is visualized with color, indicating the time. No postprocessing was applied to the predicted salt pixels. Note that the manual 3D interpretation was conducted only for the salt wall and one of the four salt stocks.

CNN results

Human
interpretation

Salt is relatively insensitive to nonstationary source wavelet

(Waldeland et al., 2018)

Presenter
Presentation Notes
) Waldeland et al.’s (2018) (c) The predicted salt body is marked with red compared to (e) the manual picks by Rojo et al. (2016). (d) The predicted full 3D salt body from CNN and (f) that from Rojo et al.’s (2016) manual interpretation. The manual 3D interpretation was conducted only for the salt wall and one of the four salt stocks.

18a-56

Progress in seismic facies classification (F3 data volume)

Amplitude Labels
Prediction near training

 (Amplitude only)
Prediction near training

 (Amplitude, RMS, Chaos)

(Zhang et al., 2021)

Presenter
Presentation Notes
Some results predicted by the enhanced encoder-decoder. (a) The label and recognition result of a training section. (b) The label and recognition result of a testing section. (c) The prediction results of inline sections near training sections.

18a-57

Progress in seismic facies classification (F3 data volume)

(Zhang et al., 2021)

Prediction far from training

Presenter
Presentation Notes
Predictions of (a) inline sections far from training sections, (b) crosslines 892 and 919, and (c) time slices at 924 and 1620 ms. The sections are randomly extracted from the predicted data cube.

Conclusions
• CNN is not magic

• The convolutions used are similar to those used in PhotoShop and in seismic
attribute analysis

• “Pooling” is not unlike blocking and smoothing used in well log analysis
• The activations are the same kind of “thresholds” interpreters use in predicting

lithofacies from gamma ray logs (e.g. sandstone, mudstone, shale)
• CNN is currently the best option to perform 2D image classification
• CNN is not perfect; there will be misclassifications (OK for fossils, but not for cars!)
• Training data are tedious to generate; it is common to use a pretrained CNN and

simply apply it to their data
• CNN will not replace the expert interpreter

• Interpreters will be needed to train the network
• Interpreters will be able to analyze vastly greater amounts of data
• Interpreters will be needed to quality control the results

18a-58

Traditional shallow learning vs. deep learning

Seismic Interpretation

Decision making

Oil
No Oil

Shallow Learning using Attributes

(modified from Seif, 2018)

We will be
needed!

We will be
replaced!

Oil
No Oil

Deep Learning using Raw Images

18a-59

Presenter
Presentation Notes
Geoscientists have been using neural networks for over 20 years. One vision of the future is that deep learning software will tell us where to drill for oil in addition to what news to read on Google, what music to buy from the Apple Store, and what movie to watch on Netflix. The interpreters chair is now empty.My vision is a little less ambitious, with the computer taking over monotonous, repetitive tasks. The example of driving a car to work, leaving home at the same time, taking the same route, and parking in the same parking lot is a repetitive task. Repetitive tasks for today’s seismic interpreter include picking another horizon, picking another fault, tying one more well. If you work for a seismic processing company and need to define the top and base of salt for subsequent depth migration, picking the extent of the salt is a repetitive process. No interpreter will miss such processes. For these simple “classifications” (the green horizon or not the green horizon) the interpreters job is one of quality controlling the result – accepting, rejecting, or modifying the �“classification.” With the computer conducting these repetitive tasks, the interpreter now has the time to evaluate alternative hypotheses of reservoir quality, preferred drilling locations, and optimized completion strategies.

	Slide Number 1
	TensorFlow
	Common activation functions (that answer a binary question)
	Neural networks
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Example 1: Classification of fusilinids
	Convolution of pixels in a photograph at two locations
	Convolution of pixels in a photograph using a running window
	Convolution
	Convolution with 3D (3-component or RGB image) input
	Common PhotoShop filters based on convolutions
	Networks of neurons
	Visualizing application of a single neuron
	Visualizing the application of four neurons
	Activation function
	“Pooling” multiple input values into a single output
	An example of pooling
	A very simple (“incomplete”) Convolutional Neural Network
	Three distinct classes
	A not-so-deep convolutional neural network
	Example
	Deep Convolutional Neural Networks
	Deep Convolutional Neural Networks
	Transfer learning from the V-3 CNN classifier
	Oklahoma Petroleum Information Center
	Core analysis workflow
	Core analysis (Mississippi Lime play, Oklahoma)
	Augmenting the training data through rotation
	Augmenting the training data through rotation
	Augmenting the training data through rotation
	�A Bedded skeletal peloidal packstone-grainstone sample image from the core not used in the CNN training. �
	A spiculitic mudstone-wackestone sample image from the core not used in the CNN training.
	�A splotchy packstone-grainstone sample image from the core not used in the CNN training. �
	Using (almost all) lithofacies described
	Examples of the classification performed by the retrained ResNetV2
	An example of misclassification
	Confusion matrix of retrained CNN
	Pitfalls: Can you identify this rock?
	Carpet classification and examples of class 04
	Next steps: Construct a geologist confusion matrix
	What about seismic amplitude patterns?
	Slide Number 53
	Slide Number 54
	Salt is relatively insensitive to nonstationary source wavelet
	Progress in seismic facies classification (F3 data volume)
	Progress in seismic facies classification (F3 data volume)
	Conclusions
	Traditional shallow learning vs. deep learning

