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A deep learning workflow 
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Convolutional Neural networks
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CNN workflow

• Generate training seismic images and label images
• Build a convolutional neural network model
• Train and validate the model with training seismic images and label images
• Feed the application seismic data to the model for prediction
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Typical architecture of a CNN model
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• Consists of a contracting path (capture features) and an expansive path (localization);
• A fully convolutional network without any fully connected layers;
• Increases the resolution of the output by supplying successive layers;
• Allows to input the full context;
• Needs to extrapolate the context at the border region.

U-Net architecture



Training volumes

(Wu, X., 2019, GitHub repository, https://github.com/xinwucwp/faultSeg)
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Training and validation
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Application to steep normal faults (an easy problem)
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Application to steep normal faults (an easy problem)
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T=0.8s T=1.08s
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Application to moderate angle faults (an intermediate problem)
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Cause of “stairstep” artifacts: Migration 
images the seismic wavelet (and hence 
coherence anomalies) perpendicular to 
the reflector dip. If the faults are not 
perpendicular to the reflector we obtain 
stairstep images.
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Application to moderate angle faults (an intermediate problem)



T=0.68s T=1.24s
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Application to listric faults (a difficult problem)
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A simplified U-net model 
used by Wu et al. (2019)
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G G’Image processing fault probability CNN fault probability

An simplified U-net model 
used in Wu et al. (2019)
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An simplified U-net model 
used in Wu et al. (2019)
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Conclusions

• The U-Net architecture CNN performs well on fault detection without any 
human-computer interactive work;

• The CNN model trained by the synthetic training volumes can be applied to 
different data;

• The computation cost on training a CNN model is high, but extremely low on 
data prediction; 

• The CNN method was trained only to be sensitive to faults, resulting in two 
classes – a fault, and not-a-fault; 

•  The CNN method does better than image processing in detecting  faults 
with shallower dips, including those represented by fault-plane reflections;

• CNN images do not generate stair-step artifacts.



Future plans

• Generate more complex models for CNN training;

• Allow the CNN model to be trained by cropped 3D real data volumes;

• Allow interpreters to select synthetic or real data to train a new model;
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